Weighting regressions by propensity scores.
نویسندگان
چکیده
Regressions can be weighted by propensity scores in order to reduce bias. However, weighting is likely to increase random error in the estimates, and to bias the estimated standard errors downward, even when selection mechanisms are well understood. Moreover, in some cases, weighting will increase the bias in estimated causal parameters. If investigators have a good causal model, it seems better just to fit the model without weights. If the causal model is improperly specified, there can be significant problems in retrieving the situation by weighting, although weighting may help under some circumstances.
منابع مشابه
Comparing Weighting Methods in Propensity Score Analysis
The propensity score method is frequently used to deal with bias from standard regression in observational studies. The propensity score method involves calculating the conditional probability (propensity) of being in the treated group (of the exposure) given a set of covariates, weighting (or sampling) the data based on these propensity scores, and then analyzing the outcome using the weighted...
متن کاملToolkit for Weighting and Analysis of Nonequivalent Groups: A tutorial for the twang package
The Toolkit for Weighting and Analysis of Nonequivalent Groups, twang, contains a set of functions and procedures to support causal modeling of observational data through the estimation and evaluation of propensity scores and associated weights. This package was developed in 2004. After extensive use, it received a major update in 2012. This tutorial provides an introduction to twang and demons...
متن کاملStratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study.
Estimation of treatment effects with causal interpretation from observational data is complicated because exposure to treatment may be confounded with subject characteristics. The propensity score, the probability of treatment exposure conditional on covariates, is the basis for two approaches to adjusting for confounding: methods based on stratification of observations by quantiles of estimate...
متن کاملWeight Trimming and Propensity Score Weighting
Propensity score weighting is sensitive to model misspecification and outlying weights that can unduly influence results. The authors investigated whether trimming large weights downward can improve the performance of propensity score weighting and whether the benefits of trimming differ by propensity score estimation method. In a simulation study, the authors examined the performance of weight...
متن کاملPRACTICE OF EPIDEMIOLOGY Analytic Strategies to Adjust Confounding using Exposure Propensity Scores and Disease Risk Scores: Nonsteroidal Antiinflammatory Drugs and Short-term Mortality in the Elderly
Little is known about optimal application and behavior of exposure propensity scores (EPS) in small studies. In a cohort of 103,133 elderly Medicaid beneficiaries in New Jersey, the effect of nonsteroidal antiinflammatory drug use on 1-year all-cause mortality was assessed (1995–1997) based on the assumption that there is no protective effect and that the preponderance of any observed effect wo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evaluation review
دوره 32 4 شماره
صفحات -
تاریخ انتشار 2008